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ABSTRACT

At a single frequency an array's bearing-response pattern is expressed as a weighted
sum of terms involving a steering matrix and the eigenvalues and eigenvectors of the
array’s spectral density matrix, This point of view is used to gain an understanding of
the beam patterns generated by the Adaptive Search and Track Array (AST A) processor,
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AN EIGENVECTOR INTERPRETATION OF AN
ARRAY'S BEARING-RESPONSE PATTERN

INTRODUCTION

Conventional array bearing-response patterns are derived in terms
of the eigenvector decomposition of the sampled acoustic field's spectral
density matrix, The Adaptive Search and Track Array (ASTA) process-
ing technique proposed by Owsley! derives filters for a multisensor
array from the components of the eigenvector corresponding to the
largest eigenvalue of the spectral density matrix, The relationship be-
tween beam patterns resulting from this choice of filters and bearing-
response patterns due to conventional time-delay beamforming provides
a basis for a better understanding of both processing techniques,

The bearing-response pattern of an n-elementarray of hydrophones
can be expressed in terms of the spectral density matrix of the received
cata, which, in turn, can be writien as a weighted sum of outer prod-
ucts, Each outer product uses an eigenvector of the spectral density
matrix and is weighted by the corresponding eigenvalue,

In an acoustic field having equal power at all hydrophones and no
spatial coherence, all eigenvalues of the spectral density matrix are
equal, However, as targets appear, the spatial coherence of the re-
ceived data increases, and the eigenvalues, in general, will no longer
be equal. Thus, the information contained in the bearing-response pac-
tern becomes concentrated in the terms of its eigenvector expansion
corresponding to the larger eigenvalues, The equation for a beam pat-
tern of the ASTA processor is the dominant term in the eigenvector
expansion of the array's conventional bearing-response pattern,

DERIVATION OF BEARING-RESPONSE EXPANSION

Consider the conventional beamformer of Fig. 1.

IN, L. Owsley, "An Adaptive Searck and Track Array (ASTA)," NUSL Technical Meniorandum No,
2242-166-69, 7 July 1969,
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Fig. 1 - Conventional Beamformer

Let the ixi(w)$ , i=1,2, ..., nbe single frequency, complex ran-
dom processes at radian frequency w, and let the {e-iwT;{ be the
phase shifts required to steer the array to some direction 8, The

H, (w)} are transfer functions of linear filters that may be used to
""'shade'' the array,

We define the array's bearing-response pattern as the beamformer
output power versus the steering direction 6., In general, this pattern
differs from the array's farfield beam pattern since the latter is ob-
tained by fixing the steering direction to some angle 6, and then plot-
ting the beamformer output power versus the angle of a single, far-
field source,

Let us define vectors x(w), y(w,8), and H(w) as

-

[+, () [y, (0, 0) (1, (o) ]

x(w) = y(w, 6) = H(w) =

x_ ()

i yniM.e)J H';(m)
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and a delay matrix D(w,8) as

i -inl N
[ 4
0
(1)
D(w, ) =
O -ian
Then, — € ==
y(w, 8) = D(w, §) x(w)
The beamformer output is now
z(m,0)=HT(m)y(a;,6)=yT(w,6)H(m) . (2)

The bearing-response function is defined by
B(w,6)=E|z(w,0)|?=E [2*(0,0)z(w,0)] |,
where E denotes expected value., Substitution of Eq. (2) into Eq. (3)

yieids . "
B(w0) =E [H'T(w)y (e, 6) yT(,0) Hw)]

«E [H*T(0) D*(w,6) x* (@) xT(w) DT (&, 8) H(w)] “
)

=H*T(w) D* (e, 0) 3 E[x'(w) xT(w)] * [ D{w, 6) H(m)] .
But the bracketed quantity is just the spectral density matrix of the in-

puts; i.e., (5, @ - . . S, (]

Su@=E[@xT@] = . iz (5)

sy@ . s )
where S;,(w) is the cross-spectral density function for the ith and
jth inputs, Thus, we can write
Blw, 8) =H*T(a) D.(w. ) S"(m) D(w, OH(w) . (6)
We now take advantage of the following expansion for S,,(w) (See
the Appendix):

S,@= X A (@ my e) myT(e) (7)

K=

|
|
i
|




The |\, (w)l are the eigenvalues of S,,(w), and the {m (w)} are
the corre¢sponding normalized eigenvectors, Substituting Eq. (7) into
Eq. (6) yields

B(w, 6) = K%_,- : /\K (w) [H'T(w) D’ (w, 6) mK(m)] [mK'T(m) D(w, 8) H(m)] . (8)
But

oT
H*T () D* (w 0) mK(w) = [m:(T () D(w, 6) H(w)] = scalar;

therefore,
Blw0= I A (W|HT@D (@8m (@] . (9)
K=1
Thus, we have expressedthe array's single frequency, bearing-response
pattern as a weighted sum of terms, each of which depends only on a

single eigenvector; the weights in the sum are the corresponding eigen-
values,

DISCUSSION OF ASTA BEAM PATTERNS

ASTA has the following structure:

x(e) m(w) \

° °
S . z{w)
° .

xplw) mn(w)

Fig, 2 - ASTA Processor
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Notice that no steering delays are present, The filters ;mK(w)e are
determined from the eigenvector associated with the largest eigenvalue
of the array's spectral density matrix, i.e.,

S.x (o) m(o) = )\m" m(w) ,

where
o, (w)

m(w) =
m, ()

It can be shown ? that with these filters the system's output power is
maximized under the constraint that

m*T(w) m(w) = constant
From simulation results, Owsley? has found that a beam patteran for
ASTA will have lobes in the direction of the targets, Since the bearing-
response pattern of a conventional beamformer also has lobes in the

direction of the targets, one might wonder if there is any connection
between the two patterns, The answer is yes, as will now be shown,

To compute a beam pattern for ASTA, let T(w) be a single fre-
quency, complex output of a farfield source in some direction 6., The
vector of received signals is then

x(e) =T(@) D" Ne, 6 1=T(w) D*(c, )1

where D(w,8) is as defined above (Eq. (1)), and
1

1l

The beampattern B (w,6) is the output power as a function of 6
where 0 is the direction of the farfield source; i. e, ,

2
Blw, 8)=E|z(w, 0)|

27, N, Frinklin, Matrix Theorz, Prentice tiall, Inc,, Englewood Cliffs, N, Y., 1988, p, 142,
3 Sce Footaote 1.




But
28w, 0) = xT (w) m(e) =T( 1TD*(w,8) m(w) . (10)

As a result,

2
Blen0) =11 T@ 1217 D (0, 0) m(@)| . (11)

Comparing Eqs., (9) and (11), we see that for the case of uniform
shading of the conventional processor, i.e., H{w) = H {w) =1, B(w,0)
equals (to within a scale factor) one term of B(w,6).

If the acoustic field is of uniform power at all hydrophones and
possesses no spatially coherent component, S, , (w) will be proportional
to the identity matrix, In this case all eigenvalues of S  (w) will be
equal, and, therefore, each term of B(w,8) is weighted by the same
amount, A target, however, will add a spatially coherent component to
the acoustic field and cause S_,(w) to deviate from a diagonal matrix,
The eigenvalues of S,,(w) will no longer be equal in general; in fact,
certain terms of B(w,08) will dominate over others., The ASTA proc-
essor provides us with the term corresponding to \_,, , i.e., the most
heavily weighted component of B(w, 8),

SUMMAR .

It has been shown that at a single frequency, an array's bearing-re-
sponse pattern can be expressed as a weighted sum of terms involving
a steering matrix and an eigenvector of the array's spectral matrix;
the weights in the sum are the corresponding eigenvalues, This result
has been used to show that a beam pattern for the ASTA processor rep-
resents the dominant component of the conventional beamformer's
bearing-response pattern, The results obtained here are generalizable
to the broadband case,




Appendix
DERIVATION OF EIGENVECTOR EXPANSION FOR
SPECTRAL DENSITY MATRIX

Let S5,,(w) be a cross-spectral density matrix, Since S, (w) is
nonnegative definite, it can be diagonalized by the following unitary
transformation:

[ A, () ]

Mo =MT () S, () M(w) =

O . .
L A (m)_J

where the {)\i (w)} are the eigenvalues of S“l {(w) and M(w) = modal
matrix of S”(w); i,e., M(uw) = [m (W), . . ., m, (w)] , where the
’m, (w)} are orthonormal eigenvectors of S” (w). Solving for S“(w)
gives

S” () =M(0) M) M* T ()

The (i, k) element of M(w) M w) is

(@ = X (m (o)), A ) 8,

q=1
where (mq (w) ); = ith component of m (w) and
1 , K=g
S5 =
Ke 30 , K#q

The (i,j) element of M(w) Aw) M ' (w) is now

05} = K‘\; , Hix (“’)(ml(“')/' i
- X qz;] (mq(m))i A led B (m;(m))i
= KZ:,-_I my (w»i )‘K () (m;(o')) i

Thus, we have

S., () = laii {w)] = '

‘ Al\' (w) m, () m:(T(u‘)

T S
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